Gilvusmycin, a New Antitumor Antibiotic Related to CC-1065

YUSUKE TOKORO, TOSHIYUKI ISOE and KAZUTOSHI SHINDO*

Pharmaceutical Research Laboratory, Kirin Brewery Co., Ltd., 3 Miyahara-cho, Takasaki-shi, Gunma 370-1295, Japan

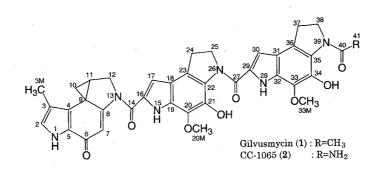
(Received for publication December 18, 1998)

A new antitumor antibiotic gilvusmycin was isolated from the culture broth of *Streptomyces* sp. QM16. The structure of gilvusmycin was related to CC-1065 and determined by NMR spectral analysis. Gilvusmycin exhibited antitumor activity against murine leukemia P388 *in vivo*.

In the course of screening for new antitumor antibiotics, *Streptomyces* sp. QM16 was found to produce a novel antitumor antibiotic gilvusmycin (1). 1 was recovered from both mycelium and filtered broth by extraction and purified by chromatography. Structural studies revealed it to possess similarity to CC-1065¹¹ (2) (Fig. 1).

1 showed growth inhibition against various tumor cells in vitro, and also showed antitumor activity against murine leukemia P388 in vivo.

In this paper, we describe the production, isolation, structural elucidation and biological properties of 1.


Taxonomy of the Producing Strain

Culture QM16 was isolated from a soil sample collected at Takahashi, Okayama Prefecture, Japan. Characterization of the strain was carried out mainly by the methods described by SHIRLING and GOTTLIEB²⁾. The aerial mycelium of the strain monopodially branched on the main stem and terminated in spirals forming spore chains with more than 50 spores per chain. The spores were cylindrical $(0.5 \sim 0.6 \times 0.7 \sim 1.0 \,\mu\text{m})$ with smooth surfaces. The cultural and physiological properties of strain QM16 grown on various media at 27°C are shown in Tables 1 and 2, respectively. The whole-cell hydrolysate contained the L, L isomer of diaminopimelic acid which corresponds to cell-wall type 1. Based on these morphological and chemotaxonomic characteristics, it was concluded that the strain belongs to the genus *Streptomyces*.

Fermentation

A well grown agar slant of *Streptomyces* sp. QM16 was used to inoculate a 500-ml Erlenmeyer flask con-

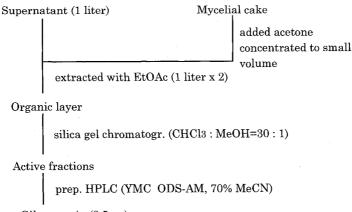
Fig. 1. Structure of gilvusmycin (1) and CC-1065 (2).

Sucrose-nitrate agar	G:	Good	
		Am:	Good; Yellowish gray
		R:	Pale yellowish brown
		Sp:	None
Glycerol-asparagine	G:	Good	
agar		Am:	Good; Yellowish gray
		R:	Deep red
		Sp:	None
Yeast extract - malt	G:	Good	
extract agar	Am:	Good;	Yellowish gray
-		R:	Dark yellow
		Sp:	None
Oatmeal agar	G:	Good	
-		Am:	Good; Yellowish gray
		R:	Yellowish orange
		Sp:	None

Table 1. Cultural characteristics of strain QM16.

G: growth, Am: aerial mycelium, R: reverse side of colony, Sp: soluble pigment.

Table 2. Physiological properties of strain QM16.


Temperature for growth	15∼35℃
Production of melanoid pigments	
T yrosine agar	Negative
Peptone-yeast extract-iron agar	Negative
Tryptone-yeast extract agar	Negative
Hydrolysis of starch	Negative
Liquefaction of gelatin	Negative
Coagulation of milk	Negative
Peptonization of milk	Negative
Reduction of nitrate	Negative
Utilization of carbon source:	
Utilized	L-arabinose, D-xylose, D-glucose,
	D-fructose, inositol, L-rhamnose,
	raffinose, D-mannitol
Moderately utilized	sucrose

taining 100 ml of fermentation medium consisting of potato starch 1%, glucose 1%, glycerol 1%, polypeptone 0.5%, yeast extract 0.2%, corn steep liquor 1%, NaCl 0.1% and CaCO₃ 0.32%, the pH being adjusted to 7.4 before sterilization. The fermentation was carried out at 27°C for 5 days with shaking on a rotary shaker at 200 rpm.

Isolation and Purification

The isolation was guided by a bioassay (*in vitro* cytotoxicity against P383 cells).

The fermentation broth (1 liter) was centrifuged to give supernatant and mycelium cake. The mycelium cake was extracted with acetone (0.5 liter). The extract was filtered and concentrated *in vacuo* to an aqueous solution. The solution was mixed with the supernatant and

Gilvusmycin (3.5mg)

Table 3. Physicochemical properties of gilvusmycin.

Appearance	Yellow powder
MP	160~162 ℃ (dec.)
$[a]_{D}^{20}$	+85° (c 0.1, DMF)
Molecular formula	$C_{38}H_{34}O_8N_6$
HRFAB-MS Calcd:	703.2516
Found:	703.2515 (M+H) ⁺
UV l _{max} (e) (in MeOH)	276 (27,500), 370 (33,300)
IR n (KBr) cm ⁻¹	3446, 1660, 1572, 1522, 1385,
	1306, 1269, 1132, 588

extracted twice with 1 liter of ethyl acetate without adjusting pH. After evaporation, the residue was applied to a silica gel column (Wakogel, C-200, 3×30 cm) which was developed with chloroform - methanol (30:1). The active eluate was concentrated to dryness, solubilized in DMSO and then subjected to preparative HPLC (YMC ODS-AM, i.d. 2 cm \times 25 cm, 70% aq MeCN). The active fractions were concentrated to dryness to give a yellow powder of 1 (3.5 mg). The isolation scheme is shown in Fig. 2.

Structural Elucidation

The physico-chemical properties of 1 are summarized in Table 3. The molecular formula of 1 was established as $C_{38}H_{34}O_8N_6$ on the basis of HRFAB-MS data. In the IR spectrum, **1** showed broad strong bands from 1630 to 1700 cm⁻¹ suggesting the prerence of several carbonyl functions in **1**. The ¹H NMR spectrum taken in DMSO- d_6 (Fig. 3) revealed the presence of cyclopropane-derived methylene resonance (δ_H 1.42, 1.98), two methyl resonances (δ_H 2.00, 2.30), six methylene resonances (δ_H 3.25, 3.31, 4.25, 4.32, 4.45, 4.64), two methoxy resonances (δ_H 3.84, 3.88), four olefinic methine resonances (δ_H 6.42, 6.86, 7.04, 7.11), two hydrogenbound phenolic hydroxyl resonances (δ_H 11.00, 12.20) and three imine resonances (δ_H 11.36, 11.38, 11.41). The ¹³C NMR spectrum demonstrated 38 signals which were assigned to four methyls, six methylenes, five methines and 23 quaternary carbons by DEPT experiment. The

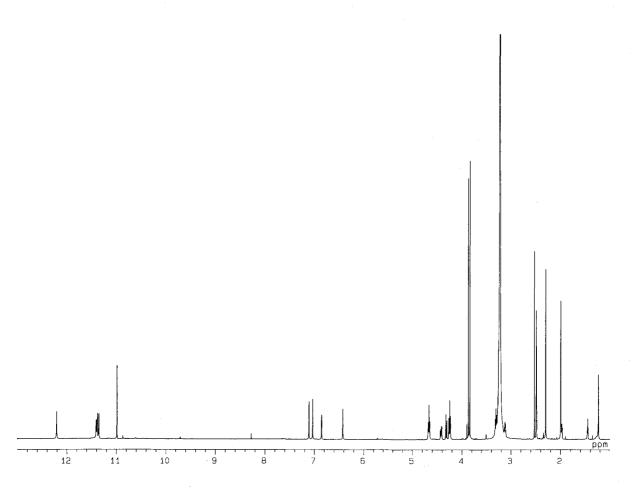


Fig. 3. 50 MHz ¹H NMR spectrum of gilvusmycin in DMSO- d_6 .

¹H and ¹³C NMR spectral data for **1** are summarized in Table 4.

The characteristic UV spectrum of 1 suggested that 1 had considerable similarity to 2^{3} . Comparison of NMR spectral data of 1 and 2^{4} also supported it. Analyzing the difference, in ¹H NMR, 1 had an additional resonance of singlet methyl at $\delta_{\rm H}$ 2.30, and in ¹³C NMR, the resonance of carbamoyl group at $\delta_{\rm C}$ 157.5 in **2** was absent in 1, in exchange of that, 1 had two resonances, one is of carbonyl carbon at $\delta_{\rm C}$ 169.3 and the other is of singlet methyl at $\delta_{\rm C}$ 24.0. The analysis above and the difference of molecular formula $(C_{38}H_{34}O_8N_6: 1, C_{37}H_{33}O_8N_7: 2)$ strongly suggested that carbamoyl group in 2 was exchanged to acetyl group in 1. The HMBC⁵⁾ experiments on 1 proved that the linkages of C-1 \sim C-39 in 2 were conserved in 1. Additionally, a long range coupling from 41-CH₃ to C-40 (carbonyl carbon) was also observed to support the existence of acetyl group in 1. Furthermore, NOE between 41-CH₃ and 38-CH₂ proved that the acetyl group was attached to the nitrogen at 39. For all these

findings, the total structure of 1 was deduced as shown in Fig. 1.

Biological Activity

1 was tested for its *in vitro* cytotoxicity. IC_{50} (μ g/ml) values against P388 (murine leukemia), K562 (human chronic myelogenous leukemia), A431 (human epidermoid carcinoma) and MKN28 (human gastric carcinoma) are shown in Table 5. Because of the outstanding cytotoxicity to P388, antitumor activity of 1 was assessed in P388-bearing mice and the results are shown in Table 6. 1 exhibited significant antitumor activity.

Experimental

General

Specific rotation was obtained on a Jasco DIP-140

		1	2
Position	δ _c	δ _H	δ_{C}
1-NH		$11.41 (d, 2, 5^{b})$	
2	123.3 d	6.86 (d, 2.5)	123.5
3	112.8 s		113.0
3M	9.4 q	2.00 (s)	9.5
4	126.7 s		129.5
5	128.8 s		157.5
6	176.2 s		176.4
7	110.4 d	6.42 (s)	110.6
8	160.5 s	.,	160.7
9	31.4 s		31.5
10	21.0 t	1.42 (dd, 4.4, 4.4)	21.6
		1.98 (dd, 4.4, 4.4)	
11	20.7 d	3.12 (ddd, 4.4, 4.4, 5.0)	20.9
12	54.5 t	4.32 (d, 11.0)	49.4
		4.45 (dd, 5.0, 11.0)	
14	161.2 s		161.2
15-NH		11.38 (d, 1.8)	
16	129.6° s		127.2
17	105.7 d	7.04 (d, 1.8)	105.9
18	117.6 s		117.3
19	130.3° s		130.4
20	133.0 s		10011
20M	60.1 q	3.88 (s)	60.0
21	138.2 s	11.00 (OH)	132.4
22	127.2 s		128.9
23	120.6 s		121.3
24	27.4 t	3.31 (dd, 8.0, 9.5)	26.6
25	53.1 t	4.64 (t, 8.0)	53.3
27	160.0 s		160.2
28-NH	100.0 5	11.36 (d, 2.5)	100.2
29	130.3° s	11.50 (a, 2.0)	127.5
30	106.4 d	7.11 (d, 2.5)	106.3
31	117.2 s	,, (, 2)	117.7
32	130.6° s		130.7
33	132.4 s		
33M	59.9 q	3.84 (s)	60.3
34	138.2 s	12.20 (OH)	133.1
35	127.0 s		129.1
36	127.0 s		118.2
37	26.4 t	3.25 ^d	27.6
38	50.8 t	4.25 (t, 8.0)	54.8
40	169.3 s	(,)	157.5
41	24.0 q	2.30 (s)	

Table 4. 125 MHz ¹³C NMR and 500 MHz ¹H NMR spectral data of gilvusmycin (1) and CC-1065^a (2) taken in DMSO-d₆.

^a Cited from the data by Martin $et al^{4}$.

^b Coupling constants in J = Hz.

° The assignments may be interchanged.

^d Resonance in one-dimentional spectra obscured by overlapping signals.

spectropolarimeter. Mass spectra were measured on a JEOL JMS-SX102A in the FAB mode using glycerol matrix. UV and IR spectra were recorded on a Hitachi U-3200 spectrophotometer and a Jasco A-3 spectrophotometer, respectively. NMR spectra were obtained on a JEOL JNM- α 500 spectrophotometer with ¹H NMR at 500 MHz and ¹³C NMR at 125 MHz. Chemical shifts are given in ppm using TMS as internal standard.

Table	5.	In	vitro	cytotoxicity	of	gilvus	mvcin.
raoie	<i>o</i> .	111	,,,,0	of to to more f	· · ·	5111000	in join.

Cell line	IC ₅₀ (ng/ml)
P388	0.08
K562	0.86
A431	0.72
MKN28	0.75

Table 6. In vivo antitumor activity of gilvusmycin against P388 murine leuken	Table 6.	In vivo antitumor	activity of	gilvusmycin	against P38	8 murine leukemi
---	----------	-------------------	-------------	-------------	-------------	------------------

Dose (mg/kg/day)	MST (days)	T/C (%)	
0 (Control)	11.0±0.9		
0.11	9.8±3.3	89.1	
0.037	14.4±3.1	130.9	
0.0123	12.2±0.5	110.9	

MST: Mean Survival Time.

P388 was implanted ip into CDF_1 mice $(1.0 \times 10^6 \text{ cells/mouse})$ on the day 0, then /gilvusmycin was given ip on the days 1, 5 and 9.

References

- REYNOLDS, V. L.; J. P. MCGOVREN & L. H. HURLEY: The chemistry, mechanism of action and biological properties of CC-1065, a potent antitumor antibiotic. J. Antibiotics 39: 319~334, 1986
- SHIRLING, E. B. & D. GOTTLIEB: Methods for characterization of *Streptomyces* species. Int. J. Syst. Bacteriol. 16: 313~340, 1966
- FROLOVA, V. I.; A. D. KUZOVKOV, A. I. CHERNYSHEV, M. M. TAIG & L. P. IVANITSKAIA: Identification of the antibiotic formed by a *Streptomyces canulus* 106/78

culture with antibiotic CC-1065. Antibiotiki 27: 483~487, 1982

- 4) MARTIN, D. G.; C. BILES, S. A. GERPHEIDE, L. J. HANKA, W. C. KRUEGER, J. P. MCGOVREN, S. A. MIZSAK, G. L. NEIL, J. C. STEWART & J. VISSER: CC-1065 (NSC 298223), a potent new antitumor agent improved production and isolation, characterization and antitumor activity. J. Antibiotics 34: 1119~1125, 1981
- 5) BAX, A. & M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108: 2093 ~ 2094, 1986